Training Games – Part II
By Wanderer
In part one we learned that there were three registers called A, X and Y. if you wanted to store any number into the C64’s memory, you had to first load one of those registers with the number that you wanted (LDA #$00) and then store it (STA $c000). 

We learned to look for two specific bytes, “A9” and the number of ships we began a game with. We learned to find where those number of ships were being stored and how to read the locations until we found one that was being reduced each time we crashed in the game.
Now we’re going to target a different part of training. 

We’re going to look at Invincibility in games. This is actually somewhat easier than hunting for infinite lives because unlike infinite life training, we know what we’re looking for. I hear you ask, we do??? Yes.
On the commodore 64 there are two memory locations of key interest. They are $D01E and $D01F. If you convert these to real numbers they are 53278 and 53279.
$D01E is a memory location that keeps track of sprite to sprite collisions. If two or more sprites happen to overlap on the screen, location $D01E will tell you which sprites collided. It is called a collision register after all. 

In many games this location is used to determine if you’ve hit another ship or a missle.
$D01F is a memory location that keeps track of sprite to background collisions. If any sprite happens to touch a character on the screen (not another sprite, but actual characters) this location will tell you which sprite hit something.
Knowing this, we already have half of the information we require to train. We know what two locations we’re looking for. The next question is, well Wanderer how do we train a game knowing what you’ve just told me?
These two locations normally hold a zero, meaning no sprites are currently touching one another and no sprites are touching any characters on the screen. Should you happen to run your ship into another ship, or into some mountains, one of those two locations is going to switch from a zero to a number other than zero. 
A bit of technical information: There are 8 possible sprites on the screen and they are numbered like this: 1,2,4,8,16,32,64,128. If you add those up, you end up with 255.
Lets say we had a game with three sprites on the screen. Sprite 1 was you, sprites 2 and 3 were bad guys. If NONE of them were touching one another, location $D01E would be equal to 0. If the two bad guys collided with one another, $D01E would be equal to 6. This is because according to the chart above (1,2,4,8,16,32,64), 2 plus 4 makes 6. Location $D01E adds up the sprites that are touching one another according this chart.
At times, its alright if $D01E isn’t equal to zero, it just shouldn’t have that first sprite (your ship) as part of the equation. If, for example, $D01E was equal to 7 that would mean that sprites 1,2 and 3 were touching because 1 plus 2 plus 4 equals 7.
Now that i have confused you, I will back up and simplify it for you. All we want to do to make you invincibile is to keep $D01E set to zero. That’s it. As long as it remains at a zero, the game can be fooled into thinking no sprites have touched one another. If we can also set its partner $D01F to zero, the game will think nothing has hit the background either.
Lets load up the game Zeppelin from Synapse Software once again. You can find it on Gamebase or on CSDB.
We already know how to use the hunt command, we used it to hunt for the number of ships we had in Zeppelin. Today we want to look for that nasty sprite to background location that makes us crash when we hit something.
We already know that “A9” means “LDA #$” but that’s if we want to load an actual number into our A-register. We don’t want to load the number $D01E, we want to load whatever is in that location. For this we use “AD”
Allow me to clarify.

“LDA #$00” and “LDA $00” are not the same thing. The first one, as you know, loads our mailbox with an actual value of zero. The second one will load what is in actual location 0 on the c64. 

Think of it this way: you can use the A,X and Y registers (or mailboxes as I call them, for beginners) to load them with actual numbers like 0,1,100, etc. and store those numbers into a location in memory.
Or you can use the A,X,Y registers to read memory. If we wanted to read location $40 on the c64 and we typed “LDA #$40” we wouldn’t be reading location 40 because we just told the computer to load the actual number 40. We need to chop off the # sign. 

Remember this : That’s how you tell the difference. 

The # sign means I want to use a real number. No # sign means you want to load A/X/Y whatever is in the memory location.

Here are some more examples:

LDA #$00 – load A-register with a value of zero
LDY #$04 – load Y-register with a value of 4
LDY $02 – load Y-register with whatever is in location 2
LDA $44 – load A-register with whatever is in location $44
LDA #$44 – load A-register with the actual number $44

We’re not going to be using the “LDA #$” for today. Instead we’re going to be using LDA $. 

We can’t use LDA #$D01E because that’s not a real number. You can’t put a value of 53278 into any location on the 64. Could you type “POKE 53280,53278”? No.
 
The 64 only holds numbers from 0-255. So LDA #$D01E wouldn’t even work if we tried. 
However if we lose the # and put LDA $D01E it WILL tell the C64 to load the A-mailbox with whatever is in $D01E. And this is what games are going to be doing when checking for collisions.

The value for LDA $ is “AD”. 
The value for LDA #$” is “A9”
Breaking into our trusty monitor by typing Alt-M we will go hunting for it.
Type “H 00000 FFFF AD 1E D0”
Wanderer you confused me again. What are those values? The command “LDA $” is represented by AD, right? 

And we know that we follow every load command with the actual value to load into it. For example, A9 had to be followed with the number of ships. So LDA$ also has to be followed with the location you want to read in. 
$D01E is “1E” and “D0”. $D01E is written backwards because we always store the low value first then the high value.
If you typed “H 0000 FFFF AD D01E” or “H 0000 FFFF AD D0 1E” you would actually be doing a search for LDA $1ED0. Remember we read the number backwards, the last 2 numbers go first. 


Our search reveals there are no LDA $D01E’s to be found. Zeppelin uses characters on the screen though so maybe we’ll have more luck looking for a sprite hitting background.
Lets hunt for a “LDA $D01F” instead of $D01E
Type: H 0000 FFFF AD 1F D0
Remember: “AD” means LDA $, 1fFand D0 means D01F.
Oh my! This time it has found four places where Zeppelin checks for a sprite hitting background.
Locations $3575, $3615, $3A0F and $54C4.
So we use the “D” command to see what’s happening for each.
Type “D 3575” (return)

LDA $D01F
LDA $48b9
Right away we know this isn’t what we’re looking for. Do you know why? It tells the 64 to load the “A” mailbox with whatever is in location $D01F which is what we’re looking for but the very next line then tells the 64 to load that same mailbox with whatever is in location $48B9. 

If you had a BASIC program:
10 A = 5

20 A = 3

30 PRINT A

What would A be? This is why that LDA $D01F is not the one we want.

Why does the game do this? Well in actual fact whenever you read locations $D01E or $D01F they will reset themselves back to zero. This is Zeppelins way of resetting the collision register when the game starts over. If it didn’t do this, the game might start with you crashing for no reason because a collision register wasn’t cleared out.
We’re on the right track though.
Next we look at $3615 by typing “D 3615”
LDA $D01F
AND #$f0
STA $342C
The game takes whatever isin the sprite to background collision location and uses the “AND” command and then stores the result in location $342cC This looks promising.
Since the game is loading the “A” mailbox and storing the result at location $342C we should change this.
Here’s what to do…
Press enter to get to a new line on the screen.
Now we’re going to change that code at line $3615 using a new command called (A)ssemble. Assemble lets us type in actual machine language commands and it will convert it to numbers and store them into memory. This is the opposite of Disassemble which converts numbers into machine code for us to read.
The old code is currently:
LDA $D01F
AND #$f0
STA $342C
Remember my last article on loading registers? We need to replace LDA $D01F with “LDA #$00”
So type “A 3615 LDA #$00”
This told the machine to put new code at location $3615 telling it to load a zero into the A-mailbox instead of loading what was in $D01F. But before we are done there is one more thing to do. 
Lets pretend this is the 64’s memory below.
AD 1F D0 29 F0 8D 2C 34
Those are the actual values of Zeppelin’s memory. The AD 1F F0 means LDA $D01F right? 29 F0 means “AND #$f0” and 8D 2C 34 means “STA $342C” (again the locations are stored backwards)
By going in and changing the LDA $D01F to LDA #$00 we have successfully gone from loading the a-mailbox with the sprite collision memory location to loading the A-register with nothing, which will keep us alive. However the command “LDA #$00” is only two bytes (A9 and 00).
Old memory: AD 1F D0 29 F0 8D 2C 34
New memory: A9 00 D0 29 F0 8D 2C 34
It might look fine to you but once the computer has processed the LDA #$00 (a9 00) command its going to hit that “D0” and do some nasty things. This is because it really should be going to the “29 f0” and performing that “and #$f0” command.
Confused?
The 64 performs machine language commands, but some commands can be one byte long, others can be two or three. Since we replaced the three byte command (LDA $D01F) with a 2 byte command (LDA #$00) it’s going to bug on that “D0”.
Lets go back and reassemble this.
Type: 
A 3615 LDA #$00 (press return)
When it shows 3617 type in “NOP” and press return
NOP means No OPeration, just like a REM statement in BASIC. It does nothing at all. and it fixes that third byte.
If you’ve done it right, you should be able to type “D 3615” to disassemble the memory and see your perfect code:
3615 LDA #$00
3617 NOP
3618 AND #$f0
361a STA $342c
The NOP doesn’t hurt anything.

Press return until you’re on a blank line and then type X to exit. Play the game now… and, we crash when we hit the walls.
Okay that didn’t work but since we modified the code I suggest that you reload the game and this time we’ll know better than to mess with $3615. 

Next on the list was $3A0F
So we will disassemble it and hope for better results:
D 3A0F
3A0F LDA $D01F
3A12 LDA #$00
The above is an example of two things. First it shows you the two types of load commands. The first loading the value of the sprite hitting background memory location and the second line loading an actual value of zero because it has a # sign.
The second example is it has two load commands in a row, so remembering our BASIC EXAMPLE

10 A = 5

20 A = 3

30 PRINT A


We know that the A-mailbox will only hold the second number. That first load is doing nothing. Whatever is in $D01F is not being stored anywhere. This is another line of code meant to clear the $D01F back to zero when it is read.
Moving along to our last hope. Location $54C4

Type D 54C4 and press return
It shows us this code:
LDA $D01F
ORA $342C
STA $45FF
AHH so we can see that unlike the last example, this one is actually storing what it finds in the collision memory address and putting it into location $45FF.
Again we will replace whatever it found in $D01F with a zero by typing this command:

A 54C4 LDA #$00 (press return)
54C6 NOP (press return)
We typed the “NOP” once again because we’re replacing 3 bytes of code with only 2, and need one byte of filler (a “do nothing” command).
The result should now look like this if you disassemble it again (D 54C4)
54C4 a9 00 LDA #$00
54C6 1A NOP
54c7 0D 2C 34 ORA $342C
54CA 8D FF 45 STA $45ff
Notice that we haven’t overwritten the “ORA $342c” because we neatly filled in the old 3 byte command of “LDA $D01F” with our 2-byte command “LDA #$00” and “NOP”
Press return until you get to a blank line and type ‘X’ to exit the monitor.
Lets hope this works because it was the last known memory location containing a “LDA $D01F” command.
Would you look at that? We can fly right through walls and barriers. It worked!
PRACTICE MAKES PERFECT

Download Balloonacy from CSDB (noname.c64.org).

Don’t download Balloonacy 2, just Balloonacy. Run it and choose Part 1 when asked to pick part 1 or 2.

What next? Let’s recall what we’ve learned.

$D01E is sprite to sprite collision
$D01F is sprite to background collision
Break into the monitor by typing Alt and M. Now we’ll hunt for any possible “LDA $D01E” commands.
H 0000 FFFF AD 1E D0
No results.
Lets try for $D01F which is the sprite to background collision.
H 0000 FFFF AD 1F D0
What luck! There is only one at location $5917.
A quick disassemble with the “d 5917” command shows us this:

5917 LDA $D01F
591A LSR
591B BCC $5927
If we replace that nasty LDA $D01F command which puts any sprite colliding with the background into the a-mailbox, with a command to load a zero, it should work.
Again, we use the “A” command to assemble new code and we want to overwrite the old code at $5917 so we will type:

A 5917 LDA #$00 (press return)
and type “NOP” to fill in that third byte and press return.

Now go to a blank line and type “X” and play the game. We’ve just trained the game in about 30 seconds. Now we’re flying right through walls.

ONE FINAL EXAMPLE

Download MS Pacman (1984) from CSDB. I’m using the version from Dr. Byte. 

We see right away that we have 3 Pac Men. Can we train this game for infinite lives and also collision cheating? 

There is no trained version on CSDB, can you be the first one to release such a version?
Infinite lives

We search for that telltale sign of “LDA #$03” which we know by now is “A9 03” so we type:
H 0000 FFFF A9 03

We see many locations that this happens… I’ll save you some time and refer you to location $96D5. Disassemble it by typing “D 96D5”
96d5 LDA #$03
96d7 STA $4002
Play the game and lose a life. Then disassemble $4002 by typing “d 4002”. 
4002 02 JAM
This means that location $4002 has a value of 2 which is apparently some machine language command called “JAM”. We don’t care what the command is, because this location isn’t being used for code – its being used to store our lives. We found it.
Recall that the “CE” command means “decrement” which comes into play when a game wants to remove a life from the game. So we will have to find a decrement of location $4002
H 0000 FFFF CE 02 40
Remember “CE” means decrement and $4002 is typed in backwards. I hope by now you’re getting this because I’m repeating myself a lot for this sake.
It finds two such commands at $1F9A and $9662. This is probably because it is also a two player game.
Now remember the “NOP” command that does nothing? What if we replaced the DECREMENT command with NOPs? It wouldn’t decrement our lives, right?
Since the command is 3 bytes long (CE 02 40) we will need 3 of them.
Type “A 1F9A NOP” (press return and type NOP and return 2 more times)

Now press return and type “A 9662 NOP” and press return and then type in two more NOPs and press return.
What we have just done is replaced locations $1F9A and $9662 with “NOP NOP NOP” where it used to be “DEC $4002”.
Type “x” to exit and try it. Do you have infinite lives?
Invincibility

If we search for “AD 1E D0” or “AD 1F D0” it comes up empty so we wont be able to have invincibility. I’ll give you a hint if you want to play around though. Since we know that the routine to lose a life is at $1F9A and $9662, if we can find where the game jumps to this routine, we can certainly make ourselves invincible. That however, is beyond the scope of this article.
I hope this has proved useful to you and that you can soon train your own games. If this series proves popular, I will move on to how to save your game and create a trainer menu.
WDR
