TRAINING GAMES
By Wanderer

So you’ve just lost your last life in your favourite game because you made a dumb move that cost you the last ship. In most cases, cracking groups try to alleviate this by adding trainers to games. Trainers, as the name implies, allows a player to get good at the game by cheating. Once you’ve mastered the game, you can then try playing it with the trainer off.

In this article, I’m going to try to teach you some of the basics so that you will be able to train your own games. This will be an introductory article and will skip some of the more in-depth concepts. I don’t want to overwhelm you and i know from experience what it’s like trying to learn machine language. Expert programmers will have to bear with the simplicity of this article.

If you are easily confused or don’t care about the technical information, scroll down to the TRAINING FOR DUMMIES chapter.

READING AND WRITING MEMORY

In BASIC, if we would like to change the screen color to black we would type “POKE 53281,0”. This command places a zero at location 53281 (the screen color). If we typed “POKE 1024,42” it would put a star in the top left of the screen. POKE takes the number after the comma and places it into the memory location before the comma. Type “POKE 53265,11” and you’ll turn the screen off. “POKE 53265,27” and it comes back.

Now if we want to read these memory locations we would type “PRINT PEEK (53281)” or “PRINT PEEK (1024)”. Peek allows us to peek into a memory location to see what is there. Of course you could use any number in the brackets to read a location, I’m using 53281 and 1024 as examples.

Since any game on the c64 is nothing more than a series of memory locations filled up with numbers that make up graphics, sprites, music and code, the logical conclusion is that one of the 65536 memory locations on the 64 must contain the number of ships that we start with in any given game.

Some of those locations must also contain code to subtract a life in the game. You may have even found some websites with cheat pokes to bypass this.

As games are usually written in 6502 (machine language), we can discard what we’ve learned about peek and pokes. The above was a quick lesson in reading and storing data.

In machine language we have to look at it in a different way.

In machine language, picture your commodore 64 as being a house. In front of the house are three mailboxes called A, X and Y. Nothing goes into the 64 or comes out of it unless it’s put into one of these mailboxes first.

If we want to turn the screen yellow, we would take the number 7 (for the color yellow) and in basic we’d type POKE 53281,7.

In machine language we have to take the number 7 and put it into one of these mailboxes. Remember, nothing goes into the 64 unless it goes to one of the mailboxes first. We would then store whatever was in the mailbox into the 64’s screen color (53281). It’s a two-step process. Fill the mailbox first with our number, and then deliver the letter to the 64's memory (storing what’s in the box).

For this article I will be using the CCS64 machine language monitor. You may use the one in your cartridge or Vice emulator but you should use CCS.

In machine language, the three commands to load the mailboxes (actually called Registers) are as follows:

LDA

LDX

LDY

As you can guess, LDA means LOAD A, LDX is LOAD X and LDY is LOAD Y. We put the number we want to load right after this command. Examples look like this:

LDA #$00

LDX #$04

LDY #$07

In plain English this means put a zero into A, put a four into X and put a seven into Y.

The numbers I used could be anywhere from 0 to 255. I’ll spare you the hexadecimal. lesson and just say that usually you have less than 10 lives in any game so we’ll just work with 0-9.

Do you follow me so far? LDX #$05 puts a 5 into this mailbox called X. LDY #$02 would put a 2 into the Y mailbox. It’s pretty simple stuff so far.

Now we haven’t actually put whatever is in our mailbox into a memory location. We haven’t said we want to do anything with what we have in these mailboxes. What I want to teach you is that in games, you will always be looking for one of these commands that loads the number of lives you start with.

Now to store whatever is in a mailbox, we use the STORE command:

STA $

STX $

STY $

These are followed by the memory locations of course, because the 64 needs to know where to store our numbers.

Here is an example that will set the border black and the screen white. My comments are in brackets

LDA #$00 (load the Accumulator mailbox with a zero)

LDX #$01 (load the X mailbox with one)

STA $d020 (take our number 00 from A mailbox and put it in the border)

STX $d021 (take the 01 from X mailbox and put it in the screen color)

I am purposely going to spare you the math lesson on how $D020 is the same as 53280 and $D021 is the same as 53281. Basically the first digit is multiplied by 4096, the second by 256, the third by 16 and the last is added on. Since D=13 that makes 13 times 4096 plus 2 times 16 which is 53280. I know, I was this confused my first time too.

To summarize:

Three mailboxes called A, X and Y can hold any number up to 255. You can take what is in the mailbox and store it anywhere in the C64. It is a two-step process. First we load the mailbox

LDA #$00 (this loads a with a zero)

In the second step we actually store whatever is in the mailbox into a memory location. This is done with the "STA" command:
STA $d020.

So now that we know what a load and store looks like in machine language (the equivalent of a peek and poke in basic), we can begin getting into the meat and potatoes.

TRAINING FOR DUMMIES

In any game, the number of lives is going to be held in one of the memory locations in the 64. Since all games reset the number of lives when you start a new game, there is going to have to be a command that loads the number of lives and replenishes the memory location the game uses to keep track of your remaining lives.

This is where our "LDA" and "STA" come in. What about "LDX" and "LDY"? Well 99% of the games use “A” instead of X or Y so this article will only focus on that register (called the Accumulator).

Go find a copy of the game Zeppelin from Synapse Software. You can download it on Gamebase64.com or CSDB. This will be our guinea pig for this article.

Load and run the game but don’t start playing it.

On the main page we can see four zeppelins, so we know that we begin the game with 4 ships. When you die, you go down to 3, then 2, then 1 and finally game over. Knowing this, what do we need to do to train this game for infinite lives?

We want to look for a part of the game that takes a number 4 (4 ships) and puts it into the “A” register (or mailbox). Then it’s going to naturally want to store that 4 from our “A” mailbox into some location. That location is going to be the location we want to keep from being decremented.

Now in machine language all commands are represented by numbers. Remember the C64 can only hold numbers. BASIC commands and line numbers are also just numbers. Sprites and music are just numbers.

“LDA #$” on the 64 is represented by "A9" (the letter A and 9). This is 169 in decimal. All you need to remember is that “A9” means “I want to load my mailbox with a number.”

Let’s now kick into the machine language monitor by typing “ALT and M” right now as the game is waiting for you to play.

Side note: In CCS you’ll see some stuff like at the top. As you might guess, AC, XR and YR tells us what is currently in our three registers (Accumulator, X register and Y register).

The first step to training is to hunt for any part of memory that loads our “A” mailbox with the number 04 because we know that we get 4 zeppelins to start.

The syntax to hunt in a machine language monitor is “H SSSS EEEE” where SSSS is the start address and EEEE is the ending address of the span you want to search.

We will search all of the memory. So lets type what’s in the quotes:

”H 0000 FFFF A9 04”

This just told the computer to (H)unt from 0000 to FFFF (the last possible location in the 64) for any part of memory that has those two numbers in that exact order.

A9 means LDA #$ because I told you so, and 04 is obviously the number 4. We always want to make sure our numbers are two digits long so we put a zero before the 4.

LDA #$04 = A9 and 04 = load the A- box with 04.

Please tell me you understand this much :)

An example:
"H 0100 5555 A9 06" we would hunt from $0100 to $5555 for LDA #$06

"H 0000 0500 A9 02" we would hunt from $0000 to $0500 for LDA #$02

This will always be your first step in training a game. You will always use the hunt command followed by A9 and the number of lives.

Now that you’ve typed it in and pressed return you will see these numbers (you should anyways):

369C 3800 3824 38A9 40FC 46C5

Those are memory locations in the C64 that currently contain the numbers A9 and 04 (LDA #$04 in machine code). So we know that one of those has to be for setting the number of zeppelins that we begin with.

Write those down, you will need to know them for later.

Now Wanderer, you ask, how do we know which one is the right location? It’s trial and error. The reality is that the game could be loading the number 4 to set color, number of sprites or other stuff you don’t want to mess with.

The next step is to take each of those six locations we wrote down and begin to test them one by one to see which one is for our number of zeppelins.

Let’s start with location $3403.

In the monitor, on a new line (just press return) type:

“D 369C” and press enter (without quotes)

This will (D)isassemble the memory location 369C where the monitor found LDA #$04.

So now we know two command for machine language monitors. H means hunt and D means disassemble.

Disassemble means disassemble all these fancy numbers into actual machine code that I can understand.

You will probably have to scroll down the screen to get the code but you should see this:

369C A9 04 LDA #$04

369E 8D E5 32 STA $32E5

36A1 20 15 3D JSR $3D15

The first number is the memory location. The two digit numbers are the hex values for the machine code (remember the 64 is only numbers, our fancy monitor is converting them to words like "LDA" and "STA").

You will not be interested in the LDA #$04 because you already know you have a value of 4 ships when you start. You want to know where it is putting the value of 04 in C64 memory. In other words, I just searched for every possible part of memory that loaded my mailbox with a "04" but I want to know where that little fellow is being stored because where it ends up is the location I need to prevent from being lowered every time I crash my ship.

The second line is paramount that you understand it....

369E 8D E5 32 STA $32e5

Remove all the numbers and crap and maybe it becomes clearer to you:

LDA #$04

STA $32E5

Can you see what’s happening?

Load my "A" mailbox with a 04 and store (STA) what I have in the mailbox to location $32E5.

Now that we know how to disassemble a memory location using the “D” command what do you think will happen if we typed:

D 32E5

It should show us whatever is at location 32E5 and that should be a number 04 right? It should be because we can see from above that the game puts a number 4 in that spot.

The result should read like this:

:32E5 04 40 NOP $xx

Where xx might be 40, 80, or C0. We only want to look at the first 2 digit number which is "04" just as it should be because the 64 was told to store a 04 there.

Now press return on a new line and type “X” to exit the monitor.

Play the game until you lose a life. Now you should have three zeppelins.

Let’s go back to the monitor by typing “ALT and M”.

If $32E5 is the right address, it should now contain a number 03 because we lost a ship.

How do we view that location again? We disassemble it.

So type “D 32E5”

Voila! We now see something like

32E5 03 40 SLO ($40,X)

This is showing us that the 04 has changed to an 03. We have found the location in the game where our ships are stored.

You are free to scroll over to that 03 and change it to any number now. Change it to “07” and press enter. You have just given yourself 7 ships.

Press enter to get to a new line and press ‘X’ to exit.

We’re done for now.

A short review….

We always begin training a game by asking ourselves, how many ships do we start with? We then go into the monitor and type:

H 0000 FFFF A9 0x

Where x is the number of ships (01, 02, 03, 04, etc)

This conducts a search for any spot where the game says hey, I want to load a number 04 into the “A” mailbox (LDA #$04).

We then disassemble the memory to see where that 04 is being stored (STA $xxxx). Where xxxx will be a 2 or 4 digit number.

We then play the game, and lose a life. We disassemble the location that the STA $xxxx pointed to because we know it once contained a number 4. We got lucky this time, because most often it’s a lot of wrong locations that don’t change when you lose a ship.

CHAPTER TWO

Now we’re going to try a game called Shamus which is also from Synapse Software. Download it from CSDB or Gamebase.

Shamus begins with four men on the top right indicating that we have four lives to start with. So what are we going to do next? You got it.

Break into the monitor using ALT and M and type this:

H 0000 FFFF A9 04

Remember that A9 means “LDA #$” and 04 is the number that is put into our accumulator (mailbox).

Eek! Once you have pressed return you will see over a dozen results on your screen, some of which are:

81C2 8259 8390 8434 8449 847E 8719

We write them all down and painstakingly have to probe each one of them to see where it is putting that number 04 that is sitting in our imaginary mailbox.

Type “d 81C2” and press return

As you scroll it will read:

LDA #$04

STA $18

So we know that location $18 is one possible area. Write it down.

Lets try the second result. Type “D 8259” (the second result of our search)

It says

LDA #$04

STA $D010 ($D010 is part of video memory. Skip this one)

Try the third result. Type “D 8390” and press return

LDA #$04

STA $18

($18 is the same location as one of the above so we don’t need to write it down)

D 8434

LDA #$04

STA $18 (another repeat, I'd say this is not the one we want because what

game would replenish your ships three times?)

D 8449

LDA #$04

STA $0E

($0e is a possibility)

D 847E

LDA #$04

STA $0E

(a repeat, same as the above location)

And so on…. Until we come to

“D 8BC4”

LDA #$04

STA $71

By the time you’re done, you should have the following possible memory locations that you know held a value of 04:

$10, $d010, $18, $0e, $28, $71

Play the game and lose a life. Now go through those six locations above, checking to see if they have fallen to the number 3.

We do this again, by using the ‘D’ command

Type:

"D 10" and press return

D 18

D 0E

D 71

When you get to the last one, and type “D 71” you will see:

:0071 03 <something>

This tells us that location 71 now contains a 3. We found it!

Rather than moving the cursor over to the 03 and changing it, why don’t we make this a permanent cheat for the duration of the game? If location $71 contains the number of lives, we know that at some point the game is going to subtract from that location. In machine language this is done with a simple command called “DECREMENT”.

The code for decrement is $C6. So we once again we use our trusty hunt command and type:

H 0000 FFFF C6

Why? Because we want to search from $0000 to $FFFF (the entire 64 memory) for a Decrement command. Are we done though?? Can you press return? Not yet.

What location are we decrementing? Oh yes, decrementing the location $71. We know this because location 71 used to hold a 04 but fell to 03 when we lost a ship.

Would you type:
H 0000 FFFF C6 04?

No because that would be searching for code that told the computer to decrement whatever number was in memory location 4.

So the final command we end up typing:

H 0000 FFFF C6 71

Which is the equivalent of saying, hey 64 I want to looking for “DEC $71”

Two locations come up:

BD36 and EF06.

If we disassemble the first one by typing “D BD36”

It reads: DEC $71 (of course)

Lets move the cursor over to where it says “DEC $71”.

How can we make a trainer? What about changing the 71 to a 79? Scroll over to the first 71 and change it to 79.

Exit the monitor using “X” and try running into a wall with your Zeppelin. Voila! Infinite lives.

Its risky to do this because who knows what location $79 is used for. There’s another way to do this but it will be discussed in the next article.

To summarize and hopefully lessen the confusion, here is what you will want to do every time you want to train a game:

1) Load and run the game but don’t play it.

2) Break into the monitor (on CCS and Vice its done by ALT-M)

3) Hunt from 0000 to FFFF for “A9 xx” where xx is the lives

4) Write down all the results

5) One by one type “D yyyy” where yyyy is a result from step 4

We do this because we want to see what the line is just after the “LDA #$xx”. That will tell us, hopefully, where the 04 is being stored with an STA command.
6) Type X to exit and lose one life in the game.

7) Now use the ‘D’ command again to view each of the locations we found in step 5

I know from trying to learn machine code years ago, this can be overwhelming. I’ve tried to make it as easy as i can to understand. This article may be continued in a second part if it proves to be popular.

WDR

